Energy identity for a class of approximate biharmonic maps into sphere in dimension four
نویسندگان
چکیده
We consider in dimension four weakly convergent sequences of approximate biharmonic maps into sphere with bi-tension fields bounded in L for some p > 1. We prove an energy identity that accounts for the loss of Hessian energies by the sum of Hessian energies over finitely many nontrivial biharmonic maps on R.
منابع مشابه
Energy identity of approximate biharmonic maps to Riemannian manifolds and its application
We consider in dimension four weakly convergent sequences of approximate biharmonic maps to a Riemannian manifold with bi-tension fields bounded in L for p > 4 3 . We prove an energy identity that accounts for the loss of hessian energies by the sum of hessian energies over finitely many nontrivial biharmonic maps on R. As a corollary, we obtain an energy identity for the heat flow of biharmoni...
متن کاملRegularity and uniqueness of the heat flow of biharmonic maps
In this paper, we first establish regularity of the heat flow of biharmonic maps into the unit sphere S ⊂ R under a smallness condition of renormalized total energy. For the class of such solutions to the heat flow of biharmonic maps, we prove the properties of uniqueness, convexity of hessian energy, and unique limit at t = ∞. We establish both regularity and uniqueness for Serrin’s (p, q)-sol...
متن کاملOn biharmonic maps and their generalizations
Abstract. We give a new proof of regularity of biharmonic maps from four-dimensional domains into spheres, showing first that the biharmonic map system is equivalent to a set of bilinear identities in divergence form. The method of reverse Hölder inequalities is used next to prove continuity of solutions and higher integrability of their second order derivatives. As a byproduct, we also prove t...
متن کاملA Regularity Theory of Biharmonic Maps
In this article we prove the regularity of weakly biharmonic maps of domains in Euclidean four space into spheres, as well as the corresponding partial regularity result of stationary biharmonic maps of higher-dimensional domains into spheres. c © 1999 John Wiley & Sons, Inc. Introduction In this article we consider the notion of biharmonic maps and begin an analytic study of the regularity pro...
متن کاملCompactness Results for Sequences of Approximate Biharmonic Maps
In this article, we prove energy quantization for approximate (intrinsic and extrinsic) biharmonic maps into spheres where the approximate map is in L logL. Moreover, we demonstrate that if the L logL norm of the approximate maps does not concentrate, the image of the bubbles are connected without necks.
متن کامل